Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free

نویسندگان

  • Ginestra Bianconi
  • Christoph Rahmede
چکیده

In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension d. We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the δ-faces of the d-dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the δ-faces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum general relativity and the classification of smooth manifolds

The gauge symmetry of classical general relativity under space-time diffeomorphisms implies that any path integral quantization which can be interpreted as a sum over spacetime geometries, gives rise to a formal invariant of smooth manifolds. This is an opportunity to review results on the classification of smooth, piecewise-linear and topological manifolds. It turns out that differential topol...

متن کامل

بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد

Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...

متن کامل

Universal Manifold Pairings and Positivity

Gluing two manifolds M1 and M2 with a common boundary S yields a closed manifold M . Extending to formal linear combinations x = ΣaiMi yields a sesquilinear pairing p = 〈 , 〉 with values in (formal linear combinations of) closed manifolds. Topological quantum field theory (TQFT) represents this universal pairing p onto a finite dimensional quotient pairing q with values in C which in physically...

متن کامل

Spectral dimensions of hierarchical scale-free networks with weighted shortcuts.

Spectral dimensions have been widely used to understand transport properties on regular and fractal lattices. However, they have received little attention with regard to complex networks such as scale-free and small-world networks. Here, we study the spectral dimension and the return-to-origin probability of random walks on hierarchical scale-free networks, which can be either fractal or nonfra...

متن کامل

Navigability of the Universe

Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more att...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015